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Resumen

The super-twisting second-order sliding-mode algo-
rithm is modified in order to design a velocity ob-
server for systems with Coulomb friction. The finite
time convergence of the observer is proved. A dis-
crete version of the observer is considered and the
corresponding accuracy is estimated.

1. INTRODUCTION

The design of observers for the mechanical systems
with Coulomb friction is important for the following
reasons:

linear observers do not achieve adequate perfor-
mance for such systems;

model based observers are usually restricted to
cases when the model is exactly known;

high-gain differentiators [2] are not exact with
any fixed finite gain and feature the peaking ef-
fect with high gains: the maximal output value
during the transient grows infinitely as the gains
tend to infinity (see, for example,[5],[11],[3]).

The sliding mode observers are widely used due to
the finite-time convergence, robustness with respect
to uncertainties and the possibility of uncertainty es-
timation (see, for example, the bibliography in the
recent tutorials [5],[11],[3]). New generation of ob-
servers based on the second-order sliding-mode algo-
rithms has been recently developed and used:

Observers with asymptotic convergence of error
were developed in [12] based on second order
sliding modes.
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In [1] an asymptotic observer for systems with
Coulomb friction was designed based on the
second-order sliding-mode but this observer re-
quired the proof of separation principle theorem.

For above mentioned observers the proof of separa-
tion principle theorem was necessary due to the as-
ymptotic convergence of the estimated values to the
real ones.
In [9] a robust exact differentiator ensuring finite
time convergence was designed, as an application of
the super-twisting algorithm [8]. These differentia-
tors were, for example, successfully applied in [13],
[4], [10]. A new differentiator [7] was developed,
based on it.
If the mathematical model of controlled system is
known, or the parameters and uncertainties of mod-
el can be estimated (which is common for the case
of mechanical systems with Coulomb friction), it is
reasonable to design a velocity observer.
In this paper we design an observer which recon-
structs the velocity from position measurements bas-
ing on the second order sliding modes super-twisting
algorithm [8] with the finite time convergence. The
designed observer allows to design the controller and
observer separately and consequently does not re-
quire the separation principle theorem. The con-
stants of the observer allowing to take into account
the partial knowledge of the systems model and for
example omit the elasticity therm. The discrete ver-
sion of super twisting algorithm is firstly considered
and for the proposed observer the corresponding ac-
curacy is estimated and proved.

2. PROBLEM STATEMENT

The general model of second order mechanical sys-
tems has the form

M(q)q̈ + C(q, q̇)q̇ + P (q̇) + G(q) + ∆(t,q, q̇) = τ,
(1)

where q ∈ Rn is a vector of generalized
coordinates,M(q) is the inertia matrix, C(q, q̇)q̇ the
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term of Coriolis and centrifugal forces, P (q̇) is the
Coulomb friction which could consists on relay term
depends on q̇, G(q) is the term of gravitational
forces, ∆(t,q, q̇) is an uncertainty term and τ is the
torque produced by the actuators. Notice the ma-
trix M(q) = MT (q) is strictly positive definite, then
M−1(q) does exist.
Introducing the variables x1 = q,x2 = q̇,u = τ, the
model (1) can be rewritten in the state space form
as:

ẋ1 = x2,

ẋ2 = f(t,x1,x2, u) + ξ(t,x1,x2), (2)

y = x1,

where f(t,x1,x2, u) = −M−1(x1)[C(x1, x2)x2 +
G(x1) − u] and ξ(t,x1,x2) = −M−1(x1)(P (x2) +
∆(t,x1,x2)). Suppose that ξ and u are bounded and
that the system (2) has a right-hand unique solution
in Filippov’s sense [6].
The task is to design an observer of the velocity
(dq

dt = q̇) with finite time convergence for the original
system (1), which for the system (2) is given by the
state x2, with the only measurement of the position
(q), i.e. the state x1.

3. OBSERVER DESIGN

The proposed super-twisting observer has the form

˙̂x1 = x̂2 + z1

˙̂x2 = f(t,x1, x̂2, u) + z2
(3)

where x̂1 and x̂2 are the state estimations, z1 and z2

are the correction factors based on the super-twisting
algorithm are given by the formulas

{
z1j = λ|x1j − x̂1j |1/2 sign(x1j − x̂1j)
z2j = α sign(x1j − x̂1j), .j = 1, .., n

(4)

where z1j , z2j , x1j and x̂1j are corresponding coor-
dinates of the vectors z1,z2,x1 and x̂1 respectively.
Assume that

||f(t,x1,x2, u)− f(t,x1, x̂2, u) + ξ(t,x1,x2)|| ≤ f+.

Note that the estimation constant f+ does not de-
pend on the elasticity terms. Let α and λ satisfy the
inequalities

α > f+

λ >
√

2
α−f+

(α+f+)(1+q)
(1−q)

(5)

where q is some chosen constant, 0 < q < 1.
Taking x̃1= x1−x̂1 and x̃2= x2−x̂2,
g(t,x1,x2, x̂2, u) = f(t,x1,x2, u) − f(t,x1, x̂2, u) +

ξ(t,x1,x2) we obtain the equations for the error in
coordinates in the following form:

˙̃x1j = x̃2j − λ|x̃1j |1/2 sign(x̃1j)
˙̃x2j = gj(t,x1,x2, x̂2, u)− α sign(x̃1j), j = 1, .., .n

(6)
where gj(t,x1,x2, x̂2, u) is a corresponding coordi-
nate of the function g.

Theorem 1 The observer (3),(4) for the system
(2) ensures the finite time convergence of estimated
states to the real states, i.e. (x̂1, x̂2) → (x1,x2).

To prove the convergence of the state estimates to
the real states, it is necessary to prove first the con-
vergence of x̃1 and ˙̃x1 to zero. Obviously, x̃1j and x̃2j

for all j = 1, ..., n satisfy the differential inclusion

˙̃x1j = x̃2j − λ|x̃1j |1/2 sign(x̃1j)
˙̃x2j ∈ [−f+, f+]− α sign(x̃1j)

(7)

Here and further all differential inclusions are un-
derstood in the Filippov sense, which means that
the right hand side is enlarged in some points in
order to satisfy the upper semicontinuity property
[6], in particular the second formula of (7) turns into
˙̃x2j ∈ [−α − f+, α + f+] with x̃1j = 0. Taking into
account that all coordinates of the estimated states
x̃1j and x̃2j for all j = 1, ..., n satisfy to the same in-
clusions we will omit bellow in the proof of theorem
1 the index j meaning that x̃1 and x̃2 are arbitrary
coordinates of the vectors x̃1 and x̃2 respectively.
Computing the derivative of ˙̃x1 obtain

¨̃x1 ∈ [−f+, f+]− (
1
2
λ

˙̃x1

|x̃1|1/2
+ α sign x̃1) (8)

The trivial identity d
dt |x| = ẋ sign x is used here.

Inclusion (8) does not “remember” anything on the
real system, but can be used to describe the majo-
rant curve drawn in the Fig. 1. In the case when
x̃1 > 0 and ˙̃x1 > 0 the trajectory is confined be-
tween the axis x̃1 = 0, ˙̃x1 = 0 and the trajectory
of the equation ¨̃x1 = −(α − f+). Let x̃1M

be the
intersection of this curve with the axis ˙̃x1 = 0. Obvi-
ously, 2(α− f+)x̃1M = ˙̃x2

10
. It is easy to see that for

x̃1 > 0, ˙̃x1 > 0

¨̃x1 ≤ f+ − α sign x̃1 − 1
2
λ

˙̃x1

|x̃1|1/2
< 0.

Thus the trajectory approaches the axis ˙̃x1 = 0.
The majorant curve for x̃1 > 0, ˙̃x1 ≥ 0 is described
by the equation (see Fig. 1)

˙̃x2
1 = 2(α− f+)(x̃1M

− x̃1) for ˙̃x1 > 0
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The majorant curve for x̃1 > 0, ˙̃x1 ≤ 0 consists of two
parts. In the first part the point instantly drops down
from (x̃1M

, 0) to the point (x̃1M
,− 2

λ (f+ + α)x̃1/2
1M

),
where the right hand side of inclusion (8) in the
’worst case’ is equal to zero. The second part of
majorant curve is the horizontal segment between
the points (x̃1M

,− 2
λ (f+ +α)x̃1/2

1M
) = (x̃1M , ˙̃x1M ) and

(0, ˙̃x1M
).

x
1

~

x
1

~

x
1

~
0

x
1

~
M

x
1
=- xg

1/2~

x
1

~
M

M
1

Figura 1: Majorant curve

Condition (5) implies that

| ˙̃x1M |
| ˙̃x10 |

<
1− q

1 + q
< 1.

Last inequality ensures the convergence of the state
(x̃1i , ˙̃x1k

) to x̃1 = ˙̃x1 = 0 and, moreover, the conver-
gence of Σ∞0 | ˙̃x1k

|. To prove the finite time of con-
vergence consider the dynamics of x̃2. Obviously,
x̃2 = ˙̃

1x at the moments when x̃1 = 0 and taking
into account that

˙̃x2j = gj(x1x2, x̂2, u)− α sign x̃1j , j = 1, ..., n

(gj is corresponding coordinate of vector g) obtain
that

0 < α− f+ ≤ | ˙̃x2| ≤ α + f+

holds in a small vicinity of the origin. Thus

| ˙̃x1k| ≥ (α− f+)tk,

where tk is the time interval between the successive
intersection of the trajectory with the axis x̃1 = 0.
Hence

tk ≤ | ˙̃x1k
|

(α− f+)
and the total convergence time is given by

T ≤
∑ | ˙̃x1k

|
(α− f +)

So T is finite and the estimated states converge to
the real states in finite time.
Remark 1. The finite time convergence of observer
allows to design the observer and the control law
separately, i.e. the separation principle is satisfied.
The only requirement for its implementation is the
boundedness of the function g(t,x1,x2, x̂2, u).
Remark 2. The standard 2-sliding-mode-based dif-
ferentiator can be locally applied for differentiation
of each coordinate too. Selecting the observer’s gain
we can use the partial knowledge of system’s model
omiting the elasticity term M−1(x1)G(x1).

3.1. Discrete case

The above analysis is valid for the ideal version of
the observer. Let f,x, z1, z2 be measured at discrete
times with the time interval δ, and let ti, ti+1be suc-
cessive measurement times. Consider a discrete mod-
ification of the observer (the Euler scheme)

x̂1j(ti+1) = x̂1j(ti) + (x̂2j(ti) + λ|x1j(ti)
−x̂1j(ti)|1/2 sign(x1j(ti)− x̂1j(ti)))δ

x̂2j(ti+1) = x̂2j(ti) + (fj(ti,x1(ti), x̂2(ti), u(ti))
+α sign(x1j(ti)− x̂1j(ti)))δ, j = 1, .., .n

where x̂1j(ti), x̂2j(ti) and fj are the coordinates of
the vectors x̂1(ti), x̂2(ti) and f respectively, ti+1−
ti = δ.

Theorem 2 Suppose that the function f is uniform-
ly bounded, then the observation algorithm (9) en-
sures the convergence of the estimation errors to the
bounded region ||x̃1|| ≤ γ1δ

2, ||x̃2|| ≤ γ2δ with some
constants γ1, γ2, depending on the observer parame-
ters.

The observer (9) may be rewritten in the continuous
time as follows:

˙̂x1j = x̂2j(ti) + λ|x1(ti)− x̂1j(ti)|1/2 sign(x1j(ti)
−x̂1j(ti))

˙̂x2j = fj(ti,x1(ti), x̂2(ti), u(ti))
+α sign(x1j(ti)− x̂1j(ti)), j = 1, .., .n

Hence, the errors satisfy the differential inclusion

˙̃x1j = x̃2j(ti) + x2j − x2j(ti)
−λ|x̃1j(ti)|1/2 sign(x̃1j(ti))

˙̃x2j ∈ [−f+, f+]− α sign(x̃1j(ti)), j = 1, .., .n

Taking into account that all coordinates of the es-
timated states x̃1(ti) and x̃2(ti) satisfy to the same
inclusions, to simplify the notations, we will omit bel-
low in the proof of the theorem 2 the index j as the
corresponding coordinate numbers meaning that x̃1
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and x̃2 are the arbitrary coordinates of the vectors
x̃1.and x̃2 respectively.
Let ||f + ξ|| ≤ f+

1 , then

˙̃x1 ∈ x̃2(ti) + [−f+
1 , f+

1 ]δ − λ|x̃1(ti)|1/2 sign(x̃1(ti))
˙̃x2 ∈ [−f+, f+]− α sign(x̃1(ti))

(9)
It may be considered as (7) with measurement errors.
Indeed, let D be some compact region around the ori-
gin O of the space x̃1, x̃2. As follows from the proof
of Theorem 1, all trajectories of (7) starting in D
converge in some finite time T to the origin O. Dur-
ing this time they do not leave some larger homoge-
neous disk BR0 = {(x̃1, x̃2)||x̃1|1/2 + |x̃2| ≤ R0}. Let
M(R) = máx{∣∣x̃2 − λ|x̃1|1/2 sign(x̃1)

∣∣ | (x̃1, x̃2) ∈
BR}. Due to the homogeneity property M(R) = mR,
where the constant m > 0 can be easily calculated.
Thus, obviously, in BR0

|x̃1(t)−x̃1(ti)| ≤ mR0δ, |x̃2(t)−x̃2(ti)| ≤ (f++α)δ,

and, denoting f+
2 = f+ + f+

1 + α, obtain that the
trajectories of (9) satisfy the inclusion

˙̃x1 ∈ x̃2 + [−f+
2 , f+

2 ]δ − λ|x̃1 + ...
+[−2m, 2m]R0δ|1/2 sign(x̃1 + [−2m, 2m]R0δ)
˙̃x2 ∈ [−f+, f+]− α sign(x̃1 + [−2m, 2m]R0δ)

while (x̃1, x̃2) ∈ B2R0 .With δ being zero, the dynam-
ics (10) coincides with (7), whose trajectories con-
verge in finite time to the origin. Due to the con-
tinuous dependence of the Filippov solutions on the
graph of the differential inclusion, with sufficiently
small δ the trajectories of (10) starting in D termi-
nate in the time T in some small compact vicinity
D̃ ⊂ D of the origin without leaving B2R0on the
way. Let Ω be the compact set [6] of all points be-
longing to the trajectory segments starting in D̃ and
corresponding to the closed time interval T , D̃ ⊂ Ω.
With δ small enough D̃ ⊂ Ω ⊂ D, since the origin O
is invariant for (10).
Obviously, Ω is an invariant set attracting the tra-
jectories of (9) starting in D. Check now that it
is a globally attracting set. Define a homogeneous
parameter-time-coordinate transformation

t 7−→ ηt, (x̃1, x̃2) 7−→ (η2x̃1, ηx̃2),
(R0, δ) 7−→ (ηR0, ηδ) (10)

and let Gη(x̃1, x̃2) = (η2x̃1, ηx̃2). It is easily seen
that (10) preserves (10), i.e. the trajectories are pre-
served. Choose such η > 1 that GηΩ ⊂ D, then the
trajectories of the inclusion

˙̃x1 ∈ x̃2 + [−f+
2 , f+

2 ]ηδ − λ|x̃1 + ...
+[−2m, 2m]R0η

2δ|1/2 sign(x̃1 + [−2m, 2m]R0η
2δ)

˙̃x2 ∈ [−f+, f+]− α sign(x̃1 + [−2m, 2m]R0η
2δ)

starting in GηD terminate following time ηT in GηΩ
⊂ D without leaving GηB2R0 = B2ηR0 on the way.
Comparing (10) and (11) obtain that (11) describes
the solutions of (9) in B2ηR0 , but with redundantly
enlarged ”noise level”due to the replacement of δ by
ηδ > δ. Hence, the solutions of (9) satisfy (11) in
B2ηR0 . Therefore, the trajectories of (9) starting in
GηD terminate following time ηT in GηΩ ⊂ D and
proceed into Ω in time T . Representing the whole
plane x̃1, x̃2 as R2 = Gk

ηD obtain the global finite-
time convergence to the set Ω.
Let Ω satisfy the inequalities |x̃1| ≤ a1, |x̃2| ≤ a2

with some discretization interval δ0. It is easy to see
that (9) is invariant with respect to the transforma-
tion t 7−→ ηt, (x̃1, x̃2) 7−→ (η2x̃1, ηx̃2), δ 7−→ ηδ.
Let Ω satisfy the inequalities |x̃1| ≤ a1, |x̃2| ≤ a2

with some discretization interval δ0. Applying the
transformation with η = δ/δ0 obtain that with arbi-
trary δ > 0 the invariant set satisfies the inequalities
|x̃1| ≤ γ1δ

2, |x̃2| ≤ γ2δ with γ1 = a1/δ2
0 , γ2 = a2/δ0.

4. EXAMPLE

Consider a pendulum system with Coulomb friction
given by the equation

θ̈ =
1
J

τ − MgL

2J
sin θ − Vs

J
θ̇ − Ps

J
sign(θ̇),

where the values M = 0,2, g = 9,81, L = 0,3, J =
0,05, VS = 0,2, Ps = 0,25 were taken. Let it be driven
by the twisting controller

τ = −2 sign(θ − θd)− sign(θ̇ − θ̇d),

where θd = sin t and θ̇d = cos t are the reference
signals. The system can be rewritten as

ẋ1 = x2

ẋ2 = 1
J τ − MgL

2J sin x1 − Vs

J x2 − Ps

J sign(x2)

The calculation shows that |− Vs

J x̃2− Ps

J sign(x2)| ≤
f+ = 17. Therefore, the observer parameters α =
20 and λ = 17 were chosen. Note that the term
|MgL

2J sin x1| would be taken into account for the
choice of the differentiator parameters [9]. Thus, the
proposed velocity observer has the form

˙̂x1 = x̂2 + 17|x̃1|1/2 sign(x̃1)
˙̂x2 = 1

J τ − MgL
2J sin x1 − Vs

J x̂2 + 20 sign(x̃1)

The initial values θ = x1 = π/4 and θ̇ = x2 = 0 were
taken at t = 0. The performance of the observer with
the sampling interval δ = 0,00001 is shown in Fig. 2,
the finite-time convergence of the estimated velocity
to the real one is demonstrated in Fig. 3.
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Figura 2: Estimation error for x2.
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Figura 3: Real and estimated velocity.

5. CONCLUSIONS

The super-twisting second-order sliding-mode algo-
rithm is modified in order to design a velocity ob-
server for systems with Coulomb friction. The finite
time convergence of the observer is proved. The dis-
crete realization of the observer is considered and the
corresponding accuracy is estimated. The gain of the
proposed observer is chosen taking into account only
the terms with velocity, ignoring the elasticity terms.
The usage of the proposed observer does not require
the separation principle theorem, i.e. allows to design
the controller and observer separately.
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